Follow Techotopia on Twitter

On-line Guides
All Guides
eBook Store
iOS / Android
Linux for Beginners
Office Productivity
Linux Installation
Linux Security
Linux Utilities
Linux Virtualization
Linux Kernel
System/Network Admin
Scripting Languages
Development Tools
Web Development
GUI Toolkits/Desktop
Mail Systems
Eclipse Documentation

How To Guides
General System Admin
Linux Security
Linux Filesystems
Web Servers
Graphics & Desktop
PC Hardware
Problem Solutions
Privacy Policy




6.4. Replication Implementation Details

MySQL replication capabilities are implemented using three threads (one on the master server and two on the slave). When a START SLAVE statement is issued on a slave server, the slave creates an I/O thread, which connects to the master and asks it to send the updates recorded in its binary logs. The master creates a thread to send the binary log contents to the slave. This thread can be identified as the Binlog Dump thread in the output of SHOW PROCESSLIST on the master. The slave I/O thread reads the updates that the master Binlog Dump thread sends and copies them to local files, known as relay logs, in the slave's data directory. The third thread is the SQL thread, which the slave creates to read the relay logs and to execute the updates they contain.

In the preceding description, there are three threads per master/slave connection. A master that has multiple slaves creates one thread for each currently-connected slave, and each slave has its own I/O and SQL threads.

The slave uses two threads so that reading updates from the master and executing them can be separated into two independent tasks. Thus, the task of reading statements is not slowed down if statement execution is slow. For example, if the slave server has not been running for a while, its I/O thread can quickly fetch all the binary log contents from the master when the slave starts, even if the SQL thread lags far behind. If the slave stops before the SQL thread has executed all the fetched statements, the I/O thread has at least fetched everything so that a safe copy of the statements is stored locally in the slave's relay logs, ready for execution the next time that the slave starts. This enables the master server to purge its binary logs sooner because it no longer needs to wait for the slave to fetch their contents.

The SHOW PROCESSLIST statement provides information that tells you what is happening on the master and on the slave regarding replication. The following example illustrates how the three threads show up in the output from SHOW PROCESSLIST.

On the master server, the output from SHOW PROCESSLIST looks like this:

*************************** 1. row ***************************
     Id: 2
   User: root
   Host: localhost:32931
     db: NULL
Command: Binlog Dump
   Time: 94
  State: Has sent all binlog to slave; waiting for binlog to
         be updated
   Info: NULL

Here, thread 2 is a Binlog Dump replication thread for a connected slave. The State information indicates that all outstanding updates have been sent to the slave and that the master is waiting for more updates to occur. If you see no Binlog Dump threads on a master server, this means that replication is not running — that is, that no slaves are currently connected.

On the slave server, the output from SHOW PROCESSLIST looks like this:

*************************** 1. row ***************************
     Id: 10
   User: system user
     db: NULL
Command: Connect
   Time: 11
  State: Waiting for master to send event
   Info: NULL
*************************** 2. row ***************************
     Id: 11
   User: system user
     db: NULL
Command: Connect
   Time: 11
  State: Has read all relay log; waiting for the slave I/O
         thread to update it
   Info: NULL

This information indicates that thread 10 is the I/O thread that is communicating with the master server, and thread 11 is the SQL thread that is processing the updates stored in the relay logs. At the time that the SHOW PROCESSLIST was run, both threads were idle, waiting for further updates.

The value in the Time column can show how late the slave is compared to the master. See Section 6.11, “Replication FAQ”.

  Published under the terms of the GNU General Public License Design by Interspire