Follow Techotopia on Twitter

On-line Guides
All Guides
eBook Store
iOS / Android
Linux for Beginners
Office Productivity
Linux Installation
Linux Security
Linux Utilities
Linux Virtualization
Linux Kernel
System/Network Admin
Programming
Scripting Languages
Development Tools
Web Development
GUI Toolkits/Desktop
Databases
Mail Systems
openSolaris
Eclipse Documentation
Techotopia.com
Virtuatopia.com

How To Guides
Virtualization
General System Admin
Linux Security
Linux Filesystems
Web Servers
Graphics & Desktop
PC Hardware
Windows
Problem Solutions
Privacy Policy

  




 

 

11.3. Multicolumn Indexes

An index can be defined on more than one column of a table. For example, if you have a table of this form:

CREATE TABLE test2 (
  major int,
  minor int,
  name varchar
);

(say, you keep your /dev directory in a database...) and you frequently make queries like

SELECT name FROM test2 WHERE major = 
constant
 AND minor = 
constant
;

then it may be appropriate to define an index on the columns major and minor together, e.g.,

CREATE INDEX test2_mm_idx ON test2 (major, minor);

Currently, only the B-tree and GiST index types support multicolumn indexes. Up to 32 columns may be specified. (This limit can be altered when building PostgreSQL; see the file pg_config_manual.h.)

A multicolumn B-tree index can be used with query conditions that involve any subset of the index's columns, but the index is most efficient when there are constraints on the leading (leftmost) columns. The exact rule is that equality constraints on leading columns, plus any inequality constraints on the first column that does not have an equality constraint, will be used to limit the portion of the index that is scanned. Constraints on columns to the right of these columns are checked in the index, so they save visits to the table proper, but they do not reduce the portion of the index that has to be scanned. For example, given an index on (a, b, c) and a query condition WHERE a = 5 AND b >= 42 AND c < 77, the index would have to be scanned from the first entry with a = 5 and b = 42 up through the last entry with a = 5. Index entries with c >= 77 would be skipped, but they'd still have to be scanned through. This index could in principle be used for queries that have constraints on b and/or c with no constraint on a — but the entire index would have to be scanned, so in most cases the planner would prefer a sequential table scan over using the index.

A multicolumn GiST index can only be used when there is a query condition on its leading column. Conditions on additional columns restrict the entries returned by the index, but the condition on the first column is the most important one for determining how much of the index needs to be scanned. A GiST index will be relatively ineffective if its first column has only a few distinct values, even if there are many distinct values in additional columns.

Of course, each column must be used with operators appropriate to the index type; clauses that involve other operators will not be considered.

Multicolumn indexes should be used sparingly. In most situations, an index on a single column is sufficient and saves space and time. Indexes with more than three columns are unlikely to be helpful unless the usage of the table is extremely stylized. See also Section 11.4 for some discussion of the merits of different index setups.


 
 
  Published courtesy of The PostgreSQL Global Development Group Design by Interspire