Follow Techotopia on Twitter

On-line Guides
All Guides
eBook Store
iOS / Android
Linux for Beginners
Office Productivity
Linux Installation
Linux Security
Linux Utilities
Linux Virtualization
Linux Kernel
System/Network Admin
Scripting Languages
Development Tools
Web Development
GUI Toolkits/Desktop
Mail Systems
Eclipse Documentation

How To Guides
General System Admin
Linux Security
Linux Filesystems
Web Servers
Graphics & Desktop
PC Hardware
Problem Solutions
Privacy Policy




16.8.2. Understanding the Impact of Cluster Interconnects

The ndbd process has a number of simple constructs which are used to access the data in a MySQL Cluster. We have created a very simple benchmark to check the performance of each of these and the effects which various interconnects have on their performance.

There are four access methods:

  • Primary key access

    This is access of a record through its primary key. In the simplest case, only one record is accessed at a time, which means that the full cost of setting up a number of TCP/IP messages and a number of costs for context switching are borne by this single request. In the case where multiple primary key accesses are sent in one batch, those accesses share the cost of setting up the necessary TCP/IP messages and context switches. If the TCP/IP messages are for different destinations, additional TCP/IP messages need to be set up.

  • Unique key access

    Unique key accesses are similar to primary key accesses, except that a unique key access is executed as a read on an index table followed by a primary key access on the table. However, only one request is sent from the MySQL Server, and the read of the index table is handled by ndbd. Such requests also benefit from batching.

  • Full table scan

    When no indexes exist for a lookup on a table, a full table scan is performed. This is sent as a single request to the ndbd process, which then divides the table scan into a set of parallel scans on all cluster ndbd processes. In future versions of MySQL Cluster, an SQL node will be able to filter some of these scans.

  • Range scan using ordered index

    When an ordered index is used, it performs a scan in the same manner as the full table scan, except that it scans only those records which are in the range used by the query transmitted by the MySQL server (SQL node). All partitions are scanned in parallel when all bound index attributes include all attributes in the partitioning key.

To check the base performance of these access methods, we have developed a set of benchmarks. One such benchmark, testReadPerf, tests simple and batched primary and unique key accesses. This benchmark also measures the setup cost of range scans by issuing scans returning a single record. There is also a variant of this benchmark which uses a range scan to fetch a batch of records.

In this way, we can determine the cost of both a single key access and a single record scan access, as well as measure the impact of the communication media used, on base access methods.

In our tests, we ran the base benchmarks for both a normal transporter using TCP/IP sockets and a similar setup using SCI sockets. The figures reported in the following table are for small accesses of 20 records per access. The difference between serial and batched access decreases by a factor of 3 to 4 when using 2KB records instead. SCI Sockets were not tested with 2KB records. Tests were performed on a cluster with 2 data nodes running on 2 dual-CPU machines equipped with AMD MP1900+ processors.

Access Type TCP/IP Sockets SCI Socket
Serial pk access 400 microseconds 160 microseconds
Batched pk access 28 microseconds 22 microseconds
Serial uk access 500 microseconds 250 microseconds
Batched uk access 70 microseconds 36 microseconds
Indexed eq-bound 1250 microseconds 750 microseconds
Index range 24 microseconds 12 microseconds

We also performed another set of tests to check the performance of SCI Sockets vis-à-vis that of the SCI transporter, and both of these as compared with the TCP/IP transporter. All these tests used primary key accesses either serially and multi-threaded, or multi-threaded and batched.

The tests showed that SCI sockets were about 100% faster than TCP/IP. The SCI transporter was faster in most cases compared to SCI sockets. One notable case occurred with many threads in the test program, which showed that the SCI transporter did not perform very well when used for the mysqld process.

Our overall conclusion was that, for most benchmarks, using SCI sockets improves performance by approximately 100% over TCP/IP, except in rare instances when communication performance is not an issue. This can occur when scan filters make up most of processing time or when very large batches of primary key accesses are achieved. In that case, the CPU processing in the ndbd processes becomes a fairly large part of the overhead.

Using the SCI transporter instead of SCI Sockets is only of interest in communicating between ndbd processes. Using the SCI transporter is also only of interest if a CPU can be dedicated to the ndbd process because the SCI transporter ensures that this process will never go to sleep. It is also important to ensure that the ndbd process priority is set in such a way that the process does not lose priority due to running for an extended period of time, as can be done by locking processes to CPUs in Linux 2.6. If such a configuration is possible, the ndbd process will benefit by 10–70% as compared with using SCI sockets. (The larger figures will be seen when performing updates and probably on parallel scan operations as well.)

There are several other optimized socket implementations for computer clusters, including Myrinet, Gigabit Ethernet, Infiniband and the VIA interface. We have tested MySQL Cluster so far only with SCI sockets. See Section 16.8.1, “Configuring MySQL Cluster to use SCI Sockets” for information on how to set up SCI sockets using ordinary TCP/IP for MySQL Cluster.

  Published under the terms of the GNU General Public License Design by Interspire