Follow Techotopia on Twitter

On-line Guides
All Guides
eBook Store
iOS / Android
Linux for Beginners
Office Productivity
Linux Installation
Linux Security
Linux Utilities
Linux Virtualization
Linux Kernel
System/Network Admin
Programming
Scripting Languages
Development Tools
Web Development
GUI Toolkits/Desktop
Databases
Mail Systems
openSolaris
Eclipse Documentation
Techotopia.com
Virtuatopia.com

How To Guides
Virtualization
General System Admin
Linux Security
Linux Filesystems
Web Servers
Graphics & Desktop
PC Hardware
Windows
Problem Solutions
Privacy Policy

  




 

 

Red Hat Enterprise Linux 8 Essentials Book now available.

Purchase a copy of Red Hat Enterprise Linux 8 (RHEL 8) Essentials in eBook ($24.99) or Print ($36.99) format

Red Hat Enterprise Linux 8 Essentials Print and eBook (ePub/PDF/Kindle) editions contain 31 chapters and over 250 pages

Buy Print Preview Book

11.3. Using the Cache With NFS

NFS will not use the cache unless explicitly instructed. To configure an NFS mount to use FS-Cache, include the -o fsc option to the mount command, as in:
mount nfs-share:/ /mount/point -o fsc
All access to files under /mount/point will go through the cache, unless the file is opened for direct I/O or writing (refer to Section 11.3.2, “Cache Limitations With NFS” for more information). NFS indexes cache contents using NFS file handle, not the file name; this means that hard-linked files share the cache correctly.
Caching is supported in version 2, 3, and 4 of NFS. However, each version uses different branches for caching.

11.3.1. Cache Sharing

There are several potential issues to do with NFS cache sharing. Because the cache is persistent, blocks of data in the cache are indexed on a sequence of four keys:
  • Level 1: Server details
  • Level 2: Some mount options; security type; FSID; uniquifier
  • Level 3: File Handle
  • Level 4: Page number in file
To avoid coherency management problems between superblocks, all NFS superblocks that wish to cache data have unique Level 2 keys. Normally, two NFS mounts with same source volume and options will share a superblock, and thus share the caching, even if they mount different directories within that volume. Take the following two mount commands:
mount home0:/disk0/fred /home/fred -o fsc
mount home0:/disk0/jim /home/jim -o fsc
Here, /home/fred and /home/jim will likely share the superblock as they have the same options, especially if they come from the same volume/partition on the NFS server (home0). Now, consider the next two subsequent mount commands:
mount home0:/disk0/fred /home/fred -o fsc,rsize=230
mount home0:/disk0/jim /home/jim -o fsc,rsize=231
In this case, /home/fred and /home/jim will not share the superblock as they have different network access parameters, which are part of the Level 2 key. The same goes for the following mount sequence:
mount home0:/disk0/fred /home/fred1 -o fsc,rsize=230
mount home0:/disk0/fred /home/fred2 -o fsc,rsize=231
Here, the contents of the two subtrees (/home/fred1 and /home/fred2) will be cached twice.
Another way to avoid superblock sharing is to suppress it explicitly with the nosharecache parameter. Using the same example:
mount home0:/disk0/fred /home/fred -o nosharecache,fsc
mount home0:/disk0/jim /home/jim -o nosharecache,fsc
However, in this case only one of the superblocks will be permitted to use cache since there is nothing to distinguish the Level 2 keys of home0:/disk0/fred and home0:/disk0/jim. To address this, add a unique identifier on at least one of the mounts, i.e. fsc=unique-identifier. For example:
mount home0:/disk0/fred /home/fred -o nosharecache,fsc
mount home0:/disk0/jim /home/jim -o nosharecache,fsc=jim
Here, the unique identifier jim will be added to the Level 2 key used in the cache for /home/jim.

 
 
  Published under the terms of the Creative Commons License Design by Interspire