Follow Techotopia on Twitter

On-line Guides
All Guides
eBook Store
iOS / Android
Linux for Beginners
Office Productivity
Linux Installation
Linux Security
Linux Utilities
Linux Virtualization
Linux Kernel
System/Network Admin
Scripting Languages
Development Tools
Web Development
GUI Toolkits/Desktop
Mail Systems
Eclipse Documentation

How To Guides
General System Admin
Linux Security
Linux Filesystems
Web Servers
Graphics & Desktop
PC Hardware
Problem Solutions
Privacy Policy




Chapter 8. GNU Objective-C runtime features

This document is meant to describe some of the GNU Objective-C runtime features. It is not intended to teach you Objective-C, there are several resources on the Internet that present the language. Questions and comments about this document to Ovidiu Predescu

8.1. +load: Executing code before main

The GNU Objective-C runtime provides a way that allows you to execute code before the execution of the program enters the main function. The code is executed on a per-class and a per-category basis, through a special class method +load.

This facility is very useful if you want to initialize global variables which can be accessed by the program directly, without sending a message to the class first. The usual way to initialize global variables, in the +initialize method, might not be useful because +initialize is only called when the first message is sent to a class object, which in some cases could be too late.

Suppose for example you have a FileStream class that declares Stdin, Stdout and Stderr as global variables, like below:

FileStream *Stdin = nil;
FileStream *Stdout = nil;
FileStream *Stderr = nil;

@implementation FileStream

+ (void)initialize
    Stdin = [[FileStream new] initWithFd:0];
    Stdout = [[FileStream new] initWithFd:1];
    Stderr = [[FileStream new] initWithFd:2];

/* Other methods here */

In this example, the initialization of Stdin, Stdout and Stderr in +initialize occurs too late. The programmer can send a message to one of these objects before the variables are actually initialized, thus sending messages to the nil object. The +initialize method which actually initializes the global variables is not invoked until the first message is sent to the class object. The solution would require these variables to be initialized just before entering main.

The correct solution of the above problem is to use the +load method instead of +initialize:

@implementation FileStream

+ (void)load
    Stdin = [[FileStream new] initWithFd:0];
    Stdout = [[FileStream new] initWithFd:1];
    Stderr = [[FileStream new] initWithFd:2];

/* Other methods here */

The +load is a method that is not overridden by categories. If a class and a category of it both implement +load, both methods are invoked. This allows some additional initializations to be performed in a category.

This mechanism is not intended to be a replacement for +initialize. You should be aware of its limitations when you decide to use it instead of +initialize.

8.1.1. What you can and what you cannot do in +load

The +load implementation in the GNU runtime guarantees you the following things:

  • you can write whatever C code you like;

  • you can send messages to Objective-C constant strings (@"this is a constant string");

  • you can allocate and send messages to objects whose class is implemented in the same file;

  • the +load implementation of all super classes of a class are executed before the +load of that class is executed;

  • the +load implementation of a class is executed before the +load implementation of any category.

In particular, the following things, even if they can work in a particular case, are not guaranteed:

  • allocation of or sending messages to arbitrary objects;

  • allocation of or sending messages to objects whose classes have a category implemented in the same file;

You should make no assumptions about receiving +load in sibling classes when you write +load of a class. The order in which sibling classes receive +load is not guaranteed.

The order in which +load and +initialize are called could be problematic if this matters. If you don't allocate objects inside +load, it is guaranteed that +load is called before +initialize. If you create an object inside +load the +initialize method of object's class is invoked even if +load was not invoked. Note if you explicitly call +load on a class, +initialize will be called first. To avoid possible problems try to implement only one of these methods.

The +load method is also invoked when a bundle is dynamically loaded into your running program. This happens automatically without any intervening operation from you. When you write bundles and you need to write +load you can safely create and send messages to objects whose classes already exist in the running program. The same restrictions as above apply to classes defined in bundle.

  Published under the terms of the GNU General Public License Design by Interspire