On-line Guides
All Guides
eBook Store
iOS / Android
Linux for Beginners
Office Productivity
Linux Installation
Linux Security
Linux Utilities
Linux Virtualization
Linux Kernel
Programming
Scripting Languages
Development Tools
Web Development
GUI Toolkits/Desktop
Databases
Mail Systems
openSolaris
Eclipse Documentation
Techotopia.com
Virtuatopia.com

How To Guides
Virtualization
Linux Security
Linux Filesystems
Web Servers
Graphics & Desktop
PC Hardware
Windows
Problem Solutions

Thinking in C++
Prev Contents / Index Next

### Binary operators

The following listing repeats the example of OverloadingUnaryOperators.cpp for binary operators so you have an example of all the operators you might want to overload. Again, both global versions and member function versions are shown.

```//: C12:Integer.h
#ifndef INTEGER_H
#define INTEGER_H
#include <iostream>

// Non-member functions:
class Integer {
long i;
public:
Integer(long ll = 0) : i(ll) {}
// Operators that create new, modified value:
friend const Integer
operator+(const Integer& left,
const Integer& right);
friend const Integer
operator-(const Integer& left,
const Integer& right);
friend const Integer
operator*(const Integer& left,
const Integer& right);
friend const Integer
operator/(const Integer& left,
const Integer& right);
friend const Integer
operator%(const Integer& left,
const Integer& right);
friend const Integer
operator^(const Integer& left,
const Integer& right);
friend const Integer
operator&(const Integer& left,
const Integer& right);
friend const Integer
operator|(const Integer& left,
const Integer& right);
friend const Integer
operator<<(const Integer& left,
const Integer& right);
friend const Integer
operator>>(const Integer& left,
const Integer& right);
// Assignments modify & return lvalue:
friend Integer&
operator+=(Integer& left,
const Integer& right);
friend Integer&
operator-=(Integer& left,
const Integer& right);
friend Integer&
operator*=(Integer& left,
const Integer& right);
friend Integer&
operator/=(Integer& left,
const Integer& right);
friend Integer&
operator%=(Integer& left,
const Integer& right);
friend Integer&
operator^=(Integer& left,
const Integer& right);
friend Integer&
operator&=(Integer& left,
const Integer& right);
friend Integer&
operator|=(Integer& left,
const Integer& right);
friend Integer&
operator>>=(Integer& left,
const Integer& right);
friend Integer&
operator<<=(Integer& left,
const Integer& right);
// Conditional operators return true/false:
friend int
operator==(const Integer& left,
const Integer& right);
friend int
operator!=(const Integer& left,
const Integer& right);
friend int
operator<(const Integer& left,
const Integer& right);
friend int
operator>(const Integer& left,
const Integer& right);
friend int
operator<=(const Integer& left,
const Integer& right);
friend int
operator>=(const Integer& left,
const Integer& right);
friend int
operator&&(const Integer& left,
const Integer& right);
friend int
operator||(const Integer& left,
const Integer& right);
// Write the contents to an ostream:
void print(std::ostream& os) const { os << i; }
};
#endif // INTEGER_H ///:~```
```//: C12:Integer.cpp {O}
#include "Integer.h"
#include "../require.h"

const Integer
operator+(const Integer& left,
const Integer& right) {
return Integer(left.i + right.i);
}
const Integer
operator-(const Integer& left,
const Integer& right) {
return Integer(left.i - right.i);
}
const Integer
operator*(const Integer& left,
const Integer& right) {
return Integer(left.i * right.i);
}
const Integer
operator/(const Integer& left,
const Integer& right) {
require(right.i != 0, "divide by zero");
return Integer(left.i / right.i);
}
const Integer
operator%(const Integer& left,
const Integer& right) {
require(right.i != 0, "modulo by zero");
return Integer(left.i % right.i);
}
const Integer
operator^(const Integer& left,
const Integer& right) {
return Integer(left.i ^ right.i);
}
const Integer
operator&(const Integer& left,
const Integer& right) {
return Integer(left.i & right.i);
}
const Integer
operator|(const Integer& left,
const Integer& right) {
return Integer(left.i | right.i);
}
const Integer
operator<<(const Integer& left,
const Integer& right) {
return Integer(left.i << right.i);
}
const Integer
operator>>(const Integer& left,
const Integer& right) {
return Integer(left.i >> right.i);
}
// Assignments modify & return lvalue:
Integer& operator+=(Integer& left,
const Integer& right) {
if(&left == &right) {/* self-assignment */}
left.i += right.i;
return left;
}
Integer& operator-=(Integer& left,
const Integer& right) {
if(&left == &right) {/* self-assignment */}
left.i -= right.i;
return left;
}
Integer& operator*=(Integer& left,
const Integer& right) {
if(&left == &right) {/* self-assignment */}
left.i *= right.i;
return left;
}
Integer& operator/=(Integer& left,
const Integer& right) {
require(right.i != 0, "divide by zero");
if(&left == &right) {/* self-assignment */}
left.i /= right.i;
return left;
}
Integer& operator%=(Integer& left,
const Integer& right) {
require(right.i != 0, "modulo by zero");
if(&left == &right) {/* self-assignment */}
left.i %= right.i;
return left;
}
Integer& operator^=(Integer& left,
const Integer& right) {
if(&left == &right) {/* self-assignment */}
left.i ^= right.i;
return left;
}
Integer& operator&=(Integer& left,
const Integer& right) {
if(&left == &right) {/* self-assignment */}
left.i &= right.i;
return left;
}
Integer& operator|=(Integer& left,
const Integer& right) {
if(&left == &right) {/* self-assignment */}
left.i |= right.i;
return left;
}
Integer& operator>>=(Integer& left,
const Integer& right) {
if(&left == &right) {/* self-assignment */}
left.i >>= right.i;
return left;
}
Integer& operator<<=(Integer& left,
const Integer& right) {
if(&left == &right) {/* self-assignment */}
left.i <<= right.i;
return left;
}
// Conditional operators return true/false:
int operator==(const Integer& left,
const Integer& right) {
return left.i == right.i;
}
int operator!=(const Integer& left,
const Integer& right) {
return left.i != right.i;
}
int operator<(const Integer& left,
const Integer& right) {
return left.i < right.i;
}
int operator>(const Integer& left,
const Integer& right) {
return left.i > right.i;
}
int operator<=(const Integer& left,
const Integer& right) {
return left.i <= right.i;
}
int operator>=(const Integer& left,
const Integer& right) {
return left.i >= right.i;
}
int operator&&(const Integer& left,
const Integer& right) {
return left.i && right.i;
}
int operator||(const Integer& left,
const Integer& right) {
return left.i || right.i;
} ///:~```
```//: C12:IntegerTest.cpp
//{L} Integer
#include "Integer.h"
#include <fstream>
using namespace std;
ofstream out("IntegerTest.out");

void h(Integer& c1, Integer& c2) {
// A complex expression:
c1 += c1 * c2 + c2 % c1;
#define TRY(OP) \
out << "c1 = "; c1.print(out); \
out << ", c2 = "; c2.print(out); \
out << ";  c1 " #OP " c2 produces "; \
(c1 OP c2).print(out); \
out << endl;
TRY(+) TRY(-) TRY(*) TRY(/)
TRY(%) TRY(^) TRY(&) TRY(|)
TRY(<<) TRY(>>) TRY(+=) TRY(-=)
TRY(*=) TRY(/=) TRY(%=) TRY(^=)
TRY(&=) TRY(|=) TRY(>>=) TRY(<<=)
// Conditionals:
#define TRYC(OP) \
out << "c1 = "; c1.print(out); \
out << ", c2 = "; c2.print(out); \
out << ";  c1 " #OP " c2 produces "; \
out << (c1 OP c2); \
out << endl;
TRYC(<) TRYC(>) TRYC(==) TRYC(!=) TRYC(<=)
TRYC(>=) TRYC(&&) TRYC(||)
}

int main() {
cout << "friend functions" << endl;
Integer c1(47), c2(9);
h(c1, c2);
} ///:~```
```//: C12:Byte.h
#ifndef BYTE_H
#define BYTE_H
#include "../require.h"
#include <iostream>
// Member functions (implicit "this"):
class Byte {
unsigned char b;
public:
Byte(unsigned char bb = 0) : b(bb) {}
// No side effects: const member function:
const Byte
operator+(const Byte& right) const {
return Byte(b + right.b);
}
const Byte
operator-(const Byte& right) const {
return Byte(b - right.b);
}
const Byte
operator*(const Byte& right) const {
return Byte(b * right.b);
}
const Byte
operator/(const Byte& right) const {
require(right.b != 0, "divide by zero");
return Byte(b / right.b);
}
const Byte
operator%(const Byte& right) const {
require(right.b != 0, "modulo by zero");
return Byte(b % right.b);
}
const Byte
operator^(const Byte& right) const {
return Byte(b ^ right.b);
}
const Byte
operator&(const Byte& right) const {
return Byte(b & right.b);
}
const Byte
operator|(const Byte& right) const {
return Byte(b | right.b);
}
const Byte
operator<<(const Byte& right) const {
return Byte(b << right.b);
}
const Byte
operator>>(const Byte& right) const {
return Byte(b >> right.b);
}
// Assignments modify & return lvalue.
// operator= can only be a member function:
Byte& operator=(const Byte& right) {
// Handle self-assignment:
if(this == &right) return *this;
b = right.b;
return *this;
}
Byte& operator+=(const Byte& right) {
if(this == &right) {/* self-assignment */}
b += right.b;
return *this;
}
Byte& operator-=(const Byte& right) {
if(this == &right) {/* self-assignment */}
b -= right.b;
return *this;
}
Byte& operator*=(const Byte& right) {
if(this == &right) {/* self-assignment */}
b *= right.b;
return *this;
}
Byte& operator/=(const Byte& right) {
require(right.b != 0, "divide by zero");
if(this == &right) {/* self-assignment */}
b /= right.b;
return *this;
}
Byte& operator%=(const Byte& right) {
require(right.b != 0, "modulo by zero");
if(this == &right) {/* self-assignment */}
b %= right.b;
return *this;
}
Byte& operator^=(const Byte& right) {
if(this == &right) {/* self-assignment */}
b ^= right.b;
return *this;
}
Byte& operator&=(const Byte& right) {
if(this == &right) {/* self-assignment */}
b &= right.b;
return *this;
}
Byte& operator|=(const Byte& right) {
if(this == &right) {/* self-assignment */}
b |= right.b;
return *this;
}
Byte& operator>>=(const Byte& right) {
if(this == &right) {/* self-assignment */}
b >>= right.b;
return *this;
}
Byte& operator<<=(const Byte& right) {
if(this == &right) {/* self-assignment */}
b <<= right.b;
return *this;
}
// Conditional operators return true/false:
int operator==(const Byte& right) const {
return b == right.b;
}
int operator!=(const Byte& right) const {
return b != right.b;
}
int operator<(const Byte& right) const {
return b < right.b;
}
int operator>(const Byte& right) const {
return b > right.b;
}
int operator<=(const Byte& right) const {
return b <= right.b;
}
int operator>=(const Byte& right) const {
return b >= right.b;
}
int operator&&(const Byte& right) const {
return b && right.b;
}
int operator||(const Byte& right) const {
return b || right.b;
}
// Write the contents to an ostream:
void print(std::ostream& os) const {
os << "0x" << std::hex << int(b) << std::dec;
}
};
#endif // BYTE_H ///:~```
```//: C12:ByteTest.cpp
#include "Byte.h"
#include <fstream>
using namespace std;
ofstream out("ByteTest.out");

void k(Byte& b1, Byte& b2) {
b1 = b1 * b2 + b2 % b1;

#define TRY2(OP) \
out << "b1 = "; b1.print(out); \
out << ", b2 = "; b2.print(out); \
out << ";  b1 " #OP " b2 produces "; \
(b1 OP b2).print(out); \
out << endl;

b1 = 9; b2 = 47;
TRY2(+) TRY2(-) TRY2(*) TRY2(/)
TRY2(%) TRY2(^) TRY2(&) TRY2(|)
TRY2(<<) TRY2(>>) TRY2(+=) TRY2(-=)
TRY2(*=) TRY2(/=) TRY2(%=) TRY2(^=)
TRY2(&=) TRY2(|=) TRY2(>>=) TRY2(<<=)
TRY2(=) // Assignment operator

// Conditionals:
#define TRYC2(OP) \
out << "b1 = "; b1.print(out); \
out << ", b2 = "; b2.print(out); \
out << ";  b1 " #OP " b2 produces "; \
out << (b1 OP b2); \
out << endl;

b1 = 9; b2 = 47;
TRYC2(<) TRYC2(>) TRYC2(==) TRYC2(!=) TRYC2(<=)
TRYC2(>=) TRYC2(&&) TRYC2(||)

// Chained assignment:
Byte b3 = 92;
b1 = b2 = b3;
}

int main() {
out << "member functions:" << endl;
Byte b1(47), b2(9);
k(b1, b2);
} ///:~```

You can see that operator= is only allowed to be a member function. This is explained later.

Notice that all of the assignment operators have code to check for self-assignment; this is a general guideline. In some cases this is not necessary; for example, with operator+= you often want to say A+=A and have it add A to itself. The most important place to check for self-assignment is operator= because with complicated objects disastrous results may occur. (In some cases it’s OK, but you should always keep it in mind when writing operator=.)

All of the operators shown in the previous two examples are overloaded to handle a single type. It’s also possible to overload operators to handle mixed types, so you can add apples to oranges, for example. Before you start on an exhaustive overloading of operators, however, you should look at the section on automatic type conversion later in this chapter. Often, a type conversion in the right place can save you a lot of overloaded operators.

Thinking in C++
Prev Contents / Index Next

 Reproduced courtesy of Bruce Eckel, MindView, Inc. Design by Interspire