Follow Techotopia on Twitter

On-line Guides
All Guides
eBook Store
iOS / Android
Linux for Beginners
Office Productivity
Linux Installation
Linux Security
Linux Utilities
Linux Virtualization
Linux Kernel
System/Network Admin
Scripting Languages
Development Tools
Web Development
GUI Toolkits/Desktop
Mail Systems
Eclipse Documentation

How To Guides
General System Admin
Linux Security
Linux Filesystems
Web Servers
Graphics & Desktop
PC Hardware
Problem Solutions
Privacy Policy




Thinking in C++
Prev Contents / Index Next

Pointer to const

The trick with a pointer definition, as with any complicated definition, is to read it starting at the identifier and work your way out. The const specifier binds to the thing it is “closest to.” So if you want to prevent any changes to the element you are pointing to, you write a definition like this:

const int* u;

Starting from the identifier, we read “u is a pointer, which points to a const int.” Here, no initialization is required because you’re saying that u can point to anything (that is, it is not const), but the thing it points to cannot be changed.

Here’s the mildly confusing part. You might think that to make the pointer itself unchangeable, that is, to prevent any change to the address contained inside u, you would simply move the const to the other side of the int like this:

int const* v;

It’s not all that crazy to think that this should read “v is a const pointer to an int.” However, the way it actually reads is “v is an ordinary pointer to an int that happens to be const.” That is, the const has bound itself to the int again, and the effect is the same as the previous definition. The fact that these two definitions are the same is the confusing point; to prevent this confusion on the part of your reader, you should probably stick to the first form.

Thinking in C++
Prev Contents / Index Next

   Reproduced courtesy of Bruce Eckel, MindView, Inc. Design by Interspire