Follow Techotopia on Twitter

On-line Guides
All Guides
eBook Store
iOS / Android
Linux for Beginners
Office Productivity
Linux Installation
Linux Security
Linux Utilities
Linux Virtualization
Linux Kernel
System/Network Admin
Scripting Languages
Development Tools
Web Development
GUI Toolkits/Desktop
Mail Systems
Eclipse Documentation

How To Guides
General System Admin
Linux Security
Linux Filesystems
Web Servers
Graphics & Desktop
PC Hardware
Problem Solutions
Privacy Policy




Thinking in C++
Prev Contents / Index Next

const in header files

To use const instead of #define, you must be able to place const definitions inside header files as you can with #define. This way, you can place the definition for a const in a single place and distribute it to translation units by including the header file. A const in C++ defaults to internal linkage; that is, it is visible only within the file where it is defined and cannot be seen at link time by other translation units. You must always assign a value to a const when you define it, except when you make an explicit declaration using extern:

extern const int bufsize;

Normally, the C++ compiler avoids creating storage for a const, but instead holds the definition in its symbol table. When you use extern with const, however, you force storage to be allocated (this is also true for certain other cases, such as taking the address of a const). Storage must be allocated because extern says “use external linkage,” which means that several translation units must be able to refer to the item, which requires it to have storage.

In the ordinary case, when extern is not part of the definition, no storage is allocated. When the const is used, it is simply folded in at compile time.

The goal of never allocating storage for a const also fails with complicated structures. Whenever the compiler must allocate storage, constant folding is prevented (since there’s no way for the compiler to know for sure what the value of that storage is – if it could know that, it wouldn’t need to allocate the storage).

Because the compiler cannot always avoid allocating storage for a const, const definitions must default to internal linkage, that is, linkage only within that particular translation unit. Otherwise, linker errors would occur with complicated consts because they cause storage to be allocated in multiple cpp files. The linker would then see the same definition in multiple object files, and complain. Because a const defaults to internal linkage, the linker doesn’t try to link those definitions across translation units, and there are no collisions. With built-in types, which are used in the majority of cases involving constant expressions, the compiler can always perform constant folding.

Thinking in C++
Prev Contents / Index Next

   Reproduced courtesy of Bruce Eckel, MindView, Inc. Design by Interspire