Follow Techotopia on Twitter

On-line Guides
All Guides
eBook Store
iOS / Android
Linux for Beginners
Office Productivity
Linux Installation
Linux Security
Linux Utilities
Linux Virtualization
Linux Kernel
System/Network Admin
Programming
Scripting Languages
Development Tools
Web Development
GUI Toolkits/Desktop
Databases
Mail Systems
openSolaris
Eclipse Documentation
Techotopia.com
Virtuatopia.com
Answertopia.com

How To Guides
Virtualization
General System Admin
Linux Security
Linux Filesystems
Web Servers
Graphics & Desktop
PC Hardware
Windows
Problem Solutions
Privacy Policy

  




 

 

11.1.1. Overview of Numeric Types

A summary of the numeric data types follows. For additional information, see Section 11.2, “Numeric Types”. Type storage requirements are given in Section 11.5, “Data Type Storage Requirements”.

M indicates the maximum display width. The maximum legal display width is 255. Display width is unrelated to the storage size or range of values a type can contain, as described in Section 11.2, “Numeric Types”.

If you specify ZEROFILL for a numeric column, MySQL automatically adds the UNSIGNED attribute to the column.

SERIAL is an alias for BIGINT UNSIGNED NOT NULL AUTO_INCREMENT UNIQUE.

SERIAL DEFAULT VALUE in the definition of an integer column is an alias for NOT NULL AUTO_INCREMENT UNIQUE.

Warning: When you use subtraction between integer values where one is of type UNSIGNED, the result is unsigned. See Section 12.8, “Cast Functions and Operators”.

  • BIT[(M)]

    A bit-field type. M indicates the number of bits per value, from 1 to 64. The default is 1 if M is omitted.

  • TINYINT[(M)] [UNSIGNED] [ZEROFILL]

    A very small integer. The signed range is -128 to 127. The unsigned range is 0 to 255.

  • BOOL, BOOLEAN

    These types are synonyms for TINYINT(1). A value of zero is considered false. Non-zero values are considered true.

    In the future, full boolean type handling will be introduced in accordance with standard SQL.

  • SMALLINT[(M)] [UNSIGNED] [ZEROFILL]

    A small integer. The signed range is -32768 to 32767. The unsigned range is 0 to 65535.

  • MEDIUMINT[(M)] [UNSIGNED] [ZEROFILL]

    A medium-sized integer. The signed range is -8388608 to 8388607. The unsigned range is 0 to 16777215.

  • INT[(M)] [UNSIGNED] [ZEROFILL]

    A normal-size integer. The signed range is -2147483648 to 2147483647. The unsigned range is 0 to 4294967295.

  • INTEGER[(M)] [UNSIGNED] [ZEROFILL]

    This type is a synonym for INT.

  • BIGINT[(M)] [UNSIGNED] [ZEROFILL]

    A large integer. The signed range is -9223372036854775808 to 9223372036854775807. The unsigned range is 0 to 18446744073709551615.

    Some things you should be aware of with respect to BIGINT columns:

    • All arithmetic is done using signed BIGINT or DOUBLE values, so you should not use unsigned big integers larger than 9223372036854775807 (63 bits) except with bit functions! If you do that, some of the last digits in the result may be wrong because of rounding errors when converting a BIGINT value to a DOUBLE.

      MySQL can handle BIGINT in the following cases:

      • When using integers to store large unsigned values in a BIGINT column.

      • In MIN(col_name) or MAX(col_name), where col_name refers to a BIGINT column.

      • When using operators (+, -, *, and so on) where both operands are integers.

    • You can always store an exact integer value in a BIGINT column by storing it using a string. In this case, MySQL performs a string-to-number conversion that involves no intermediate double-precision representation.

    • The -, +, and * operators use BIGINT arithmetic when both operands are integer values. This means that if you multiply two big integers (or results from functions that return integers), you may get unexpected results when the result is larger than 9223372036854775807.

  • FLOAT[(M,D)] [UNSIGNED] [ZEROFILL]

    A small (single-precision) floating-point number. Allowable values are -3.402823466E+38 to -1.175494351E-38, 0, and 1.175494351E-38 to 3.402823466E+38. These are the theoretical limits, based on the IEEE standard. The actual range might be slightly smaller depending on your hardware or operating system.

    M is the total number of decimal digits and D is the number of digits following the decimal point. If M and D are omitted, values are stored to the limits allowed by the hardware. A single-precision floating-point number is accurate to approximately 7 decimal places.

    UNSIGNED, if specified, disallows negative values.

    Using FLOAT might give you some unexpected problems because all calculations in MySQL are done with double precision. See Section A.5.7, “Solving Problems with No Matching Rows”.

  • DOUBLE[(M,D)] [UNSIGNED] [ZEROFILL]

    A normal-size (double-precision) floating-point number. Allowable values are -1.7976931348623157E+308 to -2.2250738585072014E-308, 0, and 2.2250738585072014E-308 to 1.7976931348623157E+308. These are the theoretical limits, based on the IEEE standard. The actual range might be slightly smaller depending on your hardware or operating system.

    M is the total number of decimal digits and D is the number of digits following the decimal point. If M and D are omitted, values are stored to the limits allowed by the hardware. A double-precision floating-point number is accurate to approximately 15 decimal places.

    UNSIGNED, if specified, disallows negative values.

  • DOUBLE PRECISION[(M,D)] [UNSIGNED] [ZEROFILL], REAL[(M,D)] [UNSIGNED] [ZEROFILL]

    These types are synonyms for DOUBLE. Exception: If the REAL_AS_FLOAT SQL mode is enabled, REAL is a synonym for FLOAT rather than DOUBLE.

  • FLOAT(p) [UNSIGNED] [ZEROFILL]

    A floating-point number. p represents the precision in bits, but MySQL uses this value only to determine whether to use FLOAT or DOUBLE for the resulting data type. If p is from 0 to 24, the data type becomes FLOAT with no M or D values. If p is from 25 to 53, the data type becomes DOUBLE with no M or D values. The range of the resulting column is the same as for the single-precision FLOAT or double-precision DOUBLE data types described earlier in this section.

    FLOAT(p) syntax is provided for ODBC compatibility.

  • DECIMAL[(M[,D])] [UNSIGNED] [ZEROFILL]

    A packed “exact” fixed-point number. M is the total number of decimal digits (the precision) and D is the number of digits after the decimal point (the scale). The decimal point and (for negative numbers) the ‘-’ sign are not counted in M. If D is 0, values have no decimal point or fractional part. The maximum number of digits (M) for DECIMAL is 65. The maximum number of supported decimals (D) is 30. If D is omitted, the default is 0. If M is omitted, the default is 10.

    UNSIGNED, if specified, disallows negative values.

    All basic calculations (+, -, *, /) with DECIMAL columns are done with a precision of 65 digits.

  • DEC[(M[,D])] [UNSIGNED] [ZEROFILL], NUMERIC[(M[,D])] [UNSIGNED] [ZEROFILL], FIXED[(M[,D])] [UNSIGNED] [ZEROFILL]

    These types are synonyms for DECIMAL. The FIXED synonym is available for compatibility with other database systems.


 
 
  Published under the terms of the GNU General Public License Design by Interspire